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SYNOPSIS

A suite of FORTRAN programs, PREF, is described for calculating preference functions
from the data base of known protein structures and for comparing smoothed profiles of
sequence-dependent preferences in proteins of unknown structure. Amino acid preferences
for a secondary structure are considered as functions of a sequence environment. Sequence
environment of amino acid residue in a protein is defined as an average over some physical,
chemical, or statistical property of its primary structure neighbors. The frequency distri-
bution of sequence environments in the data base of soluble protein structures is approx-
imately normal for each amino acid type of known secondary conformation. An analytical
expression for the dependence of preferences on sequence environment is obtained after
each frequency distribution is replaced by corresponding Gaussian function. The preference
for the «-helical conformation increases for each amino acid type with the increase of
sequence environment of buried solvent-accessible surface areas. We show that a set of
preference functions based on buried surface area is useful for predicting folding motifs in
a-class proteins and in integral membrane proteins. The prediction accuracy for helical
residues is 79% for 5 integral membrane proteins and 74% for 11 a-class soluble proteins.
Most residues found in transmembrane segments of membrane proteins with known a-
helical structure are predicted to be indeed in the helical conformation because of very
high middle helix preferences. Both extramembrane and transmembrane helices in the
photosynthetic reaction center M and L subunits are correctly predicted. We point out in
the discussion that our method of conformational preference functions can identify what
physical properties of the amino acids are important in the formation of particular secondary
structure elements. © 1993 John Wiley & Sons, Inc.

INTRODUCTION

Accurate prediction of membrane protein folding is
one of the most urgent tasks in life sciences. For
many such proteins location of transmembrane and
extramembrane a-helices must be determined before
better understanding can be gained on how they
function. Because only a small number of membrane
proteins has been examined by X-ray crystallogra-
phy,! statistical analysis of solved structures has
limited utility as a help for predicting secondary
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structure segments in such proteins. In contrast, a
structure of almost 100 different globular soluble
proteins is known with good atomic resolution.? All
of the best current algorithms for secondary struc-
ture prediction from amino acid sequence data®®
have been developed and tested using the data base
of soluble protein structures. They also suffer from
the same set of serious shortcomings. The prediction
accuracy from 60 to 70% in the three-state model
(helix, sheet, and coil) is not enough to serve as a
solid foundation for a tertiary structure prediction.
For integral membrane proteins the use of these al-
gorithms is questionable since their training was
performed on soluble proteins. Indeed, the most
widely used Chou-Fasman’s® and Garnier-Osgu-
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thorpe-Robson (GOR) algorithms* are poor pre-

dictors of membrane protein folding motifs.'® In the

rare cases when we are satisfied with the prediction

~ accuracy, it is not possible to tell what features of
the amino acids were recognized by used statistical
algorithms for the prediction of a particular second-
ary structure.

The alternative approach to the statistical one is
to guess from the start about physical or chemical
properties of amino acids that should be important
for the creation of, for example, transmembrane
segments in membrane proteins. The Kyte and
Doolittle method'* and similar ones'>'® plot
smoothed hydrophobicity values along protein se-
quence and identify transmembrane segments as the
most hydrophobic segments. The membrane-asso-
ciated helices can be identified with the aid of the

- hydrophobic moment plot.**

In this report we develop a method for finding
the dependence of conformational preference of an
amino acid on local average hydrophobicities of its
sequence neighbors. Assuming that soluble protein
structures contain statistical information about
folding of hydrophobic domains, we sought to extract
from the data base of such proteins a set of simple
preference functions that are useful for predicting
folding motifs in membrane environment as well.
The major part of this study uses the buried surface
area hydrophobicity scale of Rose et al.’® to calculate
conformational preferences. That scale is based on
partitioning of amino acids in protein interior and
on the surface. The conservation of the side-chain
hydrophobicity over residues from four protein
families is excellent when that scale is used to mea-
sure hydrophobicity.'® Furthermore, when Rose’s
scale is used to calculate preferences, it is the best
predictor of the a-helices in the photosynthetic re-
action center M subunit.!” Just by comparing simple
preference functions based on buried surface area
in consecutive primary structure segments and by
assigning the conformation to the highest value, the
secondary structure of 5 membrane proteins is pre-
dicted with an accuracy of 66% and their «-helical
conformation with an accuracy of 79% (this work
and recently published preliminary account’®).

The method of conformational preference
functions'? is not restricted to buried surface area
property or to hydrophobicity parameters derived
from solution measurements. It can be used with
any set of 20 conformational parameters. In the case
of buried surface area parameters we shall show that
our method is better than using these parameters
directly to predict secondary structure such as an
a-helix. In general, preference functions can identify

those physical-chemical properties of the amino ac-
ids that are important in the secondary structure
formation.

METHODS
Structural Data Base

The data sample consisted of monomers of 90 dif-
ferent proteins (a total of 16109 residues) known
with resolution equal or better than 0.3 nm (Table
I). Proteins were selected from the Brookhaven
Protein Data Bank (PDB).?° Secondary structures
(a-helix, B-sheet, turn, and undefined ) were assigned
to all residues using the program DSSP by Kabsch
and Sander.”’ An undefined structure was defined
as a piece of low curvature not in H-bonded struc-
ture.”’ The a-helix included the 3, 4, and 5 helix,
the §-sheet included the §8-bridge, and the turn in-
cluded the bend. In the three-state prediction model,
turn and undefined conformation were lumped to-
gether in the coil conformation. For secondary
structure prediction a-helix conformation is further
subdivided into middle helix, N-terminal helix, C-
terminal helix, and short helix. A short helix has 5
or less residues. Longer helices have 3 (if length is
less than 8 residues) to 4 N-terminal and C-terminal
residues, while all remaining residues are considered
to be in the middle helix conformation.

Using the sliding window method,? local envi-
ronment X is assigned to each residue. The envi-
ronment X of the residue n is defined to be the av-
erage of a selected property over 8 residues from n
— 4 to n + 4, excluding residue n. The first 4 and
last 4 residues in each sequence do not have assigned
environment X. Unless specified otherwise, the
property examined is the average buried surface area
of amino acids in soluble proteins given by Rose
et al.’®

Performance Measures

Four parameters are used for expressing perfor-
mance and two for reporting the secondary structure
prediction accuracy. In predicting any type of sec-
ondary structure for N residues, we distinguish the
numbers of residues that are associated with positive
correct prediction w, negative correct prediction x,
underpredictions y, and overprediction z. The cor-
relation coefficient?

c - WaXe = Yoa
(X F Vo) (X0 F 2 ) (Wo + ¥2) X (W, + 2,)) Y2
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estimates how well the predicted secondary structure
conformation is correlated with the observed one
for each secondary structure type «. It ranges from
—1.0 (perfectly anticorrelated) to 1.0 (perfectly cor-
related). The success rate (or percentage of correctly
predicted residues when multiplied by 100) Q. = w./
N, estimates the prediction accuracy for a particular
conformation « in one protein. A composite quality
index for the three state model, @3 = (w, + wg

+ w,)/N is the sum of conformational € indexes

multiplied by a fraction of residues in each confor-
mation. An overall @, and &; index for a list of pro-
teins is calculated as weighted average of all indexes
for individual proteins so that longer proteins give
correspondingly larger contribution to the overall
prediction accuracy.

Two additional parameters in Tables V and VI,
h and hp, report the percentage of residues, which
are not in middle-helical conformation, among res-
idues with local environment higher than 1.37 nm?
(h) and percentage of residues, which are not in
middle-helical conformation, among residues having
middle-helix preference higher than 1.4 (hp). These
numerical values are related to Rose’s buried surface
area scale only!® and are chosen so that roughly 10%
of the residues from the protein data base have
higher buried surface environment and helical pref-
erence. A jackknife statistical procedure was used
with protein data base when performance parame-
ters were calculated for 11 a-class proteins from that
data base (Table V). Single a-class proteins were
removed from the data set of 90 proteins during the
training procedure.

Abbreviations for the amino acid residues are
given below together with the values for buried sur-
face (in parentheses, the values are expressed in
nm?) from Rose et al.'®: G, Gly (0.63); S, Ser (0.86);
A, Ala(0.87); P, Pro(0.93); D, Asp(0.98); N,
Asn(1.03); T, Thr(1.07); E, Glu(1.14); K,
Lys(1.16); Q, GIn(1.19); C, Cys(1.32); V,
Val(1.41); H, His(1.56); I, Ile(1.58); R, Arg(1.62);
L, Leu(1.64); M, Met(1.73); Y, Tyr(1.78); F,
Phe(1.94); and W, Trp(2.25).

Preference Functions from Normal
Approximation for Frequency Distribution
of Amino Acids over Environment

Frequency distribution for lysine in the a-helix con-
formation is shown in Figure 1A. Sequence envi-
ronment on the x axis is considered as a continuous
variable X for a Gaussian curve chosen as a close
fit for that distribution. Since X values were ob-
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tained by the averaging procedure, normal function
was expected from the Central Limit Theorem** to
be a good fit for frequency distribution. The X test
of goodness of fit was used on all 20 amino acids in
the protein data base. The tested null hypothesis
was that the frequency distribution is approximately
normal. As an example, the results for the choice of
buried solvent-accessible surface scale (Rose’s
scale'®) are presented in Table II. Reported numbers
are probabilities p that higher X values can be
found. The p value between 0.10 and 0.90 is usually
taken as evidence that there is no reason to reject
the null hypothesis tested.?* The software developed
by SAS Institute (SAS Institute, Inc., Box 8000,
Cary, North Carolina 27511) was used for the Kol-
mogorov—Smirnov normality tests (not reported),
while the program developed in our laboratory was
used for the X2 tests. The tests were performed for
all hydrophobicity scales used in this paper.
We define preference function P;(X) as

P;(X) = p;(X)N/N, (2)

where p;;(X) is the frequency with which amino acid
of type i found in local environment X occurs in a
particular type j of secondary structure. Using nor-
mal approximation mentioned above, p;(X) is ex-
pressed as a ratio of one Gaussian function of X (for
conformation j) to the sum of all Gaussian functions
of X (for all conformations):

pi(X) = (Ny/o;)exp(—(X — pz)?/20%)/
(Z (N;/o;i)exp(—(X — u;)?/20%)) (3)

J

The average p; and sample standard deviation g;; of
parameters X are listed in Table III. The number
of amino acids found in each conformation (/N;) and
fraction of conformation j in the protein data set
(N;/N) are also listed in Table III.

Frequency distributions with p values outside safe
range were occasionally found with a seemingly ran-
dom distribution among hydrophobicity scales,
amino acid types, and secondary structure confor-
mations. However, preference functions based on
normal approximation for frequency distributions
could still be used instead of preference points. For
instance, the p value of less than 0.01 for the fre-
quency distribution of lysine in the undefined con-
formation (Table II) did not prevent close fit of
preference function for lysine in the a-helix confor-
mation to preference points (Figure 1B).
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Table I Data Set of Protein Structures Used to Derive Preference Functions®

No. PDB Resol. Protein Class® Unit No. aa
1 156B 2.5 Cytochrome B 562 Escherichia coli a 103
2 155C 2.5 Cytochrome C 550 Paracoccus a 134
denitrificans

3 451C 1.6 Cytochrome C551 Pseudomonas a 82
aeruginosa

4 1ABP 2.4 L-Arabinose binding protein a/b 306
Escherichia coli

5 1ACX 2.0 Actinoxanthin Actinomyces b 108
globisporus

6 1BP2 1.7 Phospholipase A2 Bovine a+b 123
pancreas

7 1CAC 2.0 Carbonic anhydrase form C a+b 256
Human

8 1CCs 1.5 Cytochrome C5 Azotobacter a 83
vinelandii

9 1CCR 1.5 Cytochrome C Rice embryos a 111

10 1CTF 1.7 L7-L12 50s ribosomal protein a/b 68

Escherichia coli

11 1CTX 2.8 a-Cobratoxin Cobra a/b 71

12 1ECO 14 Hemoglobin Chironomus thummi a 136

13 1FBJ 2.6 Ig*a Fab fragment (J539) b L 213

galactan-binding Mouse

14 1FC2 2.8 Immunoglobin Fc and fragment B a Cc 44

Human
15 1FX1 2.0 Flavodoxin Desulfovibrio vulgaris a/b 147
16 1GCN 3.0 Glucagon Porcine pancreas a 29
17 1GCR 1.6 v-1II Crystallin Calf eye lens b 174

18 1GP1 2.0 Glutathione peroxidase Bovine a/b A 184

erythrocyte

19 1GPD 2.9 D-Glyceraldehyde-3-phosphate a/b G 333

dehydrogenase Lobster

20 1HHO 21 Hemoglobin A Human a A 141

21 1HIP 2.0 High potential iron protein 85

Chromatium vinosum

22 1HMG 3.0 Hemagglutinin Influenza virus b A 328

23 1HMZ 2.0 Hemerythrin Sipunculid worm a 113

24 11G2 3.0 Immunoglobulin G1 Human b L 216

25 1INS 1.5 Insulin Pig a B 30

26 1LDX 2.9 Lactate dehydrogenase Mouse a/b 329

testicles

27 11.Z1 1.5 Lysozyme Human a/b 130

28 1MBD 14 Myoglobin Sperm whale a 153

29 1MLT 2.0 Melittin Honey bee a A 26

30 1PP2 2.5 Phospholipase A2 Western a R 122

diamondback rattlesnake

31 1PPT 1.37 Avian pancreatic polypeptide a 36

Turkey
32 1PYP 3.0 Inorganic pyrophosphatase a/b 281
Baker’s yeast

33 1RHD 2.5 Rhodanase Bovine liver a/b 293

34 1RN3 1.45 Ribonuclease A Bovine pancreas a+b 124

35 1SN3 1.8 Scorpion neurotoxin Scorpion a+b 65

36 1UBQ 1.8 Ubiquitin Human erythrocytes 76

37 2ABX 2.5 Alpha-bungarotoxin Branded 74

krait
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Table I (Continued)

No. PDB Resol. Protein Class® Unit No. aa

38 2ACT 1.7 Actinidin Kivi fruit a+b 218

39 2ADK 3.0 Adenylate kinase Porcine muscle a/b 194

40 2ALP 1.7 a-lytic protease Lysobacter b 198
enzymogenes

41 2APR 1.8 Acid proteinase Bread mold b 325

42 2ATC 3.0 Aspartate carbamoyl transferase a/b A 305
Escherichia coli

43 2AZA 1.8 Azurin Alcaligenes denitrificans a/b A 129

44 2B5C 2.0 Cytochrome B5 Bovine liver a 85

45 2CDV 1.8 Cytochrome C3 Desulfovibrio a 107
vulgaris

46 2CGA 1.8 Chymotrypsinogen A Bovine b A 245
pancreas

47 2CPP 1.63 Cytochrome P450cam a 405

) Pseudomonas putida .
48 2CYP 1.7 Cytochrome C peroxidase Baker’s a/b 293
. yeast

49 2EBX 14 Erabutoxin Sea snake b 62

50 2EST 2.5 Elastase Porcine pancreas b E 242

51 2FD1 2.0 Ferredoxin Azotobacter vinelandii a+b 106

52 2GN5 2.3 Gene 5 DNA binding protein 87
Filamentous bacteriophage fd
ml3

53 2GRS 2.0 Glutathionine reductase Human a/b 461
erythrocyte

54 2LH7 2.0 Leghemoglobin Yellow lupus root a 153
nodules

55 2I.LHB 2.0 Hemoglobin V Sea lamprey a 149

56 2MDH 2.5 * Cytoplasmic malate a/b A 324
dehydrogenase Pig heart

57 2MT2 2.3 Cd, Zn, metallothionein Rat liver 61

58 2PAB 1.8 Prealbumin Human plasma a/b A 114

59 2PKA 2.1 Kallikrein A Pig pancreas a/b B 152

60 2RHE 1.6 Immunoglobulin Bence-Jones A b 114
variable domain Human

61 2RHV 3.0 Rhinovirus 14 Human virus b 1 273

62 28SBT 2.8 Subtilisin novo Bacillus a/b 275
amyloliquefaciens

63 2SGA 1.5 Proteinase A Streptomyces griseus b 181

64 28NS 1.5 Staphylococcal nuclease a/b 141
Staphylococcus aureus

65 2S0D 2.0 Cu, Zn, Superoxide dismutase b (0] 151
Bovine erythrocyte

66 28TV 2.5 Satellite tobacco necrosis virus b 184
coat protein Tobacco

67 2TBV 2.9 Tomato bushy stunt virus Tomato b A 284

68 2TGT 1.7 Trypsinogen Bovine pancreas b 233

69 3C2C 1.68 Cytochrome C2 Rhodospirilum a 112
rubrum

70 3CNA 2.4 Concanavalin A Jack bean a/b 237

71 3CPV 1.85 Calcium-binding parvalbumin B a 108
Carp

72 3CYT 1.8 Cytochrome C Albacore tuna a (0} 103

73 3FXC 2.5 Ferredoxin Spirulina platensis at+b 98
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TableI (Continued)

No. PDB Resol. Protein Class® Unit No. aa

74 3GAP 2.5 Catabolite gene activator protein a+b A 208
Escherichia coli

75 3ICB 2.3 Calcium-binding protein Bovine a 75
intestine

76 3LDH 3.0 Lactate dehydrogenase Dogfish a/b 329
muscle

77 3PGK 2.5 Phosphoglycerate kinase Baker’s a/b 415
yeast

78 3PGM 2.8 Phosphoglycerate mutase Baker’s a/b 230
yeast

79 3RP2 1.9 Rat mast cell protease Rat b A 224

80 4ADH 2.4 Apo-Liver alcohol dehydrogenase a/b 374
Horse liver

81 4DFR 1.7 Dihydrofolate reductase a/b A 159
Escherichia coli

82 4FXN 1.8 Flavodoxin (semiquinone form) a/b 138
Clostridium MP

83 4SBV 2.8 Southern bean mosaic virus coat b A 199
protein

84 5CPA 1.54 Carboxypeptidase A Bovine a/b 307
pancreas

85 - 5PTI 1.8 Trypsin inhibitor Bovine pancreas a+b 58

86 5RXN 1.2 Rubredoxin Clostridium a+b 54
pasteurianum

87 6PAD 2.8 Papain Papaya a+b 213

88 6PCY 1.9 Plastocyanin Poplar leaves b 99

89 TTLN 2.3 Thermolysin Bacillus athb 316
thermoproteolyticus

90 8CAT 2.5 Catalase Beef liver a/b A 498

* Each protein is listed with its Brookhaven Protein Data Bank indentification code (PDB), crystallographic resolution in Angstroms
(Resol.), common name and source, the folding type (Class), the name of subunit used (Unit), and the number of residues in that

subunit (No. aa).
Y All a’s and b’s stand for o’s and §s, respectively.

A Flow Diagram of PREF Algorithms

A flow diagram of the method employed by the suite
of FORTRAN programs, PREF, is shown in Figure
2. The 1st set of programs DSSP,?' SS4 and SS7
serves to determine secondary structure from the x-
ray data (DSSP), to convert Kabsch-Sander files
into our four-structure format (SS4) and to classify
a-helix segments into short helix, N-terminal helix,
middle helix, and C-terminal helix (SS7). A fre-
quency distribution over local environments X for
all amino acids in all conformations is calculated by
PR if SS4 files are used, or by FREQ if SS7 files are
used. Both programs also use selected hydrophobic-
ity scale and appropriate class limits for environ-
ments. Files created by PR and FREQ are further
analyzed by NORM and GAUS respectively to de-
termine Gaussian parameters needed to construct
preference functions. All the results from Table III

except Table III(A1l) data are one example for the
GAUS.DAT file. It is the end result of the training
procedure with PREF. For the testing procedure,
sequence-dependent preferences are calculated by
SP or SEDP using Eqgs. (2) and (3) and the same
scale of 20 conformational parameters. These pro-
grams produce a profile of smoothed preferences.
The smoothing consists of calculating arithmetic
mean of 7, 5, or 3 preferences for helical, sheet, and
coil (turn and undefined) conformations respec-
tively, and of associating the result with the central
residue. The primary structure of a polypeptide with
unknown secondary structure serves as an input file
for SP or SEDP, which assigns conformation to each
residue by comparing the value of smoothed pref-
erence for the various possible secondary structure
types and by choosing the conformation with highest
preference. A list of proteins of known secondary
structure can also be used as an input file for SP or
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Figure 1. Lysine in the a-helix conformation. (A) Frequency distributions for environ-
ments (see Methods) of lysine in the «a-helix. (B) Dependence of preference for lysine in
the a-helix on sequence environment. Sequence environment on the x axis is obtained
from Rose’s scale of buried surface areas.’® The data base of 90 soluble proteins is used to
calculate frequency and preference points on the y axis. The four-state model (a-helix, 8-
sheet, turn, and undefined conformation) is used. Nine frequency points are obtained by
grouping the environments in total of nine classes and counting the number of occurrence
of lysine in the a-helix conformation in each class.** Chosen class separation is 0.06 nm?2.
In (A) vertical bars are interval estimation (one standard deviation ) based on the assumption
that frequency values are approximately normally distributed in the y direction.? The full
line for frequency distribution is calculated as numerator of Eq. (3), multiplied by a constant
factor: (0.06 nm?)/ V2x to find the area of the histogram. It is normal frequency distribution
for 361 lysine environments determined by their mean: 1.2368 nm? and standard deviation
0.1272 nm?. In (B) the line with short dashes is derived from Eqgs. (2) and (3). The straight
line is linear regression line through 9 preference points. Vertical bars are one standard
error above and below preference points.
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SEDP. In that case the accuracy of secondary struc-
ture prediction is reported. Predicted helical con-
formations (middle helix, N-terminal helix, C-ter-
minal helix, and short helix) are lumped together
again into the a-helix conformation by the SEDP
program when performance statistics is reported for
the three-state model («-helix, 8-sheet, and coil).
The first four residues at the N-terminal and last
four residues at the C-terminal protein end are au-
tomatically assigned the undefined conformation. If
middle helix preferences are not desired, only the

left branch of the program flow is used (PR, NORM
and SP). A suite of programs, PREF, is available
on the collaborative basis.

RESULTS

The Dependence of Amino Acid Preferences
on Local Sequence Environment

Frequency distributions for local sequence environ-
ments can be approximated with normal distribu-
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Table II Normality Tests for the Frequency Distribution of Environments Calculated
from Buried Surface Amino Acids Scalel5*

Conformation
Ala Arg Asn Asp
0.25
a-Helix < 0.01 (517) 0.90 (181) 0.12 (153) (245)
0.08
B-Sheet 0.80 (211) 0.60 (114) 0.60 (105) (90)
0.45
Turn 0.20 (264) 0.85 (139) 0.30 (257) (296)
0.05
Undefined 0.50 (277) 0.75 (114) 0.97 (210) (268)
Cys Gln Glu Gly
0.20
a-Helix 0.87 (81) 0.85 (188) 0.40 (352) (189)
0.02
8-Sheet 0.55 (95) 0.50 (108) 0.88 (118) (191)
0.96
Turn 0.25 (69) 0.25 (143) 0.90 (205) (191)
0.70
Undefined 0.20 (93) 0.35 (119) 0.15 (138) (329)
His Ile Leu Lys
0.75
a-Helix 0.40 (106) 0.45 (231) 0.12 (439) (361)
0.17
B3-Sheet 0.50 (79) 0.05 (302) 0.50 (330) (162)
0.60
Turn 0.20 (78) 0.97 (102) 0.50 (194) (283)
Undefined 0.50 (96) 0.45 (156) 0.80 (233) < 0.01 (204)
Met Phe Pro Ser
0.35
a-Helix 0.18 (98) 0.50 (189) 0.45 (109) (228)
0.60
B-sheet 0.70 (73) 0.15 (172) 0.20 (59) (244)
0.45
Turn 0.55 (38) 0.01 (102) 0.07 (254) (340)
0.40
Undefined 0.45 (52) 0.88 (108) 0.70 (283) (323)
Thr Trp Tyr Val
0.80
a-Helix 0.50 (224) 0.50 (70) 0.17 (134) (296)
0.75
B-sheet 0.35 (268) 0.45 (75) 0.98 (176) (437)
0.25
Turn 0.12 (330) 0.70 (44) 0.17 (118) (141)
0.35
Undefined 0.96 (250) 0.80 (43) 0.60 (112) (250)

* Reported numbers are probabilities p that higher X* values can be found. Total number of environments for each case is given in
parentheses. Class limits were (in nm?): 1.02-1.44 in the steps of 0.06. The x? values were calculated by our FORTRAN program, while
probabilities were extracted from the standard table (Appendix I in Ref. 68) for six degrees of freedom.



tions (Figure 1A and Table II). The distribution
parameters for buried surface sequence environment
X (Rose’s scale'®) are collected in the Table III for
each amino acid type i in each secondary confor-
mation j. The distribution averages p,; are higher in
the a-helix conformation than in the other three
secondary conformations in most cases. If the means
of the distributions in numerator and denominator
of Eq. (3) are shifted, their ratio (which is propor-
tional to preference Eq. (2)) will show the depen-
dence on X. Increased preference for helix with in-
creased X is indeed observed for all amino acid types.
The slope (b) of linear regression line is positive in
each case and it is higher for corresponding amino
acid types in the middle helix conformation (Meth-
ods) than in the a-helix conformation (Table IV
A, B).

Lysine has been selected to show that the pref-
erence function model based on the buried surface
area is a good model even for an amino acid that is
almost invariably located at the solvent-accessible
surface of proteins. The preference function for ly-
sine in the a-helix ( Figure 1B) was calculated from
Egs. (2) and (3) in the four conformations model.
There are many better examples than lysine, such
as valine, isoleucine, phenylalanine, leucine, glycine,
and serine that have even more significant (p < 0.01
on Student’s ¢t test in all cases; see Table IV) de-
pendence of their a-helix preferences on sequence
environment.

The case of leucine illustrate the advantage of
calculating leucine preference functions instead of
assuming that leucine preference is independent of
the nature of its neighbors in the sequence.?? Figure
3 shows the dependence of the a-helix conformation
preference of leucine on local environment of (A)
Rose’s buried surface areas'® and (B) Fauchére and
Pliska hydrophobicities.”® Figure 3A predicts a 2.6-
fold increase in the probability of leucine assuming
helix conformation, when its sequence neighbors
have high (X = 1.5 nm®) rather than low (X = 1.0
nm?) potential to bury their surface area during
protein folding. For the choice of Fauchére and
Pliska hydrophobicity scale,?® which is based on
partitioning of amino acids between polar and non-
polar solvents, the a-helix preference for leucine
does not show any dependence on the local hydro-
phobic environment (Figure 3B).

Also for leucine, Figure 3 shows the dependence
of B-sheet conformational preference on the local
environment of (C) buried surface areas?® and (D)
hydrophobicities.?® The probability of leucine as-
suming S-sheet conformation does not depend on
the potential of its sequence neighbors to bury their
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surface area during protein folding (Figure 3C).
Figure 3D predicts an almost 3-fold increase in the
probability of leucine assuming (3-sheet conforma-
tion, when its sequence neighbors have a high (X
= 2.5) rather than low (X = 0.5) hydrophobic se-
quence environment. Linear regression analysis of
data points (Table IV) confirmed the impression
from Figure 3D about the significant positive de-
pendence of leucine preference for $-sheet on the
sequence hydrophobic environment and from Figure
3A about the significant positive dependence of leu-
cine preference for a-helix on buried surface areas
of its neighbors (p < 0.01 on Student’s ¢ test in both
cases).

Other 19 amino acids were also analyzed as in
Figure 3A. The increase in helix probability with an
increase in buried surface environment is even
higher for some other amino acids. Keeping the same
definition of high and low buried sequence environ-
ment, the probability ratio is 3.0 for phenylalanine
and 4.2 for tryptophan (Table IV). For the middle
helix conformation (Methods), probability increase
is still steeper. The probability ratio is 10.4, 11.4,
and 21.4 for leucine, phenylalanine, and tryptophan,
respectively (Table IV). In the leucine example,
linear regression analysis gave 5.3 for the positive
slope of middle helix preference function, which can
be compared to the slope around 2.5, as seen in Fig-
ure 3A. Due to the smaller number of residues in
each of the four new helical conformations, the er-
rors in slope determination are also higher, but the
dependence of preferences on sequence environment
of buried surface areas remained very significant (p
< 0.01 on Student’s ¢ test in the case of leucine in
middle helix conformation). Helix preference de-
pendence on buried surface environment is signifi-
cant (p < 0.01) for 12 amino acid types, while middle
helix preference dependence on buried surface en-
vironment is significant for 13 amino acid types.

For low buried surface environment (1 nm?), the
probability of the middle helix conformation be-
comes negative for serine and proline if the linear
fit for preference points is used (Table IV). When
preference functions are used, such breakdown of
the model (negative preferences) cannot occur.

These findings can be summarized as follows: All
20 natural amino acids show positive correlation be-
tween their (a) a-helix preference and buried ac-
cessible surface area of their local primary structure
neighbors, (b) middle-helix preference and buried
accessible surface area of their local primary struc-
ture neighbors, and (c¢) 8-sheet preference and hy-
drophobic environment that was calculated from
hydrophobicity scale.?® The dependence of a-helix
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Table III Parameters® for the Construction of Gaussian Curves

(A) Four Secondary State Conformations

AA N,;]' Mij [e 75} AA Ni' Hij 977
(1) a-Helix (N/N; = 3.4966) (2) B-Sheet (N/N; = 4.5037)
Ala 517 1.2184 0.1254 Ala 211 1.2300 1.1303
Cys 81 1.2011 0.1143 Cys 95 1.1969 0.1173
Leu 439 1.2428 0.1229 Leu 330 1.2218 0.1202
Met 98 1.2386 0.1089 Met 73 1.2170 0.1300
Glu 352 1.2395 0.1229 Glu 118 1.2335 0.1169
Gln 188 1.2538 0.1155 Gln 108 1.2469 0.1216
His 106 1.2380 0.1184 His 79 1.2529 0.1274
Lys 361 1.2368 0.1272 Lys 162 1.2457 0.1171
Val 296 1.2301 0.1287 Val 437 1.2034 0.1243
Ile 231 1.2422 0.1196 Ile 302 1.1994 0.1213
Phe 189 1.2465 0.1243 Phe 172 1.1940 0.1279
Tyr 134 1.2314 0.1217 Tyr 176 1.2128 0.1246
Trp 70 1.2261 0.1194 Trp 75 1.2033 0.1232
Thr 224 1.2486 0.1243 Thr 268 1.2146 0.1230
Gly 189 1.2597 0.1218 Gly 191 1.2475 0.1352
Ser 228 1.2548 0.1129 Ser 244 1.2201 0.1317
Asp 245 1.2430 0.1179 Asp 90 1.2567 0.1256
Asn 153 1.2726 0.1305 Asn 105 1.2279 0.1186
Pro 109 1.25632 0.1232 Pro 59 1.2264 0.1429
Arg 181 1.2476 0.1247 Arg 114 1.2282 0.1318
(3) Turn (N/N; = 3.9212) (4) Undefined (N/N; = 4.1997)
Ala 264 1.1697 0.1251 Ala 277 1.1813 0.1211
Cys 69 1.1652 0.1187 Cys 93 1.1546 0.1312
Leu 194 1.1779 0.1185 Leu 233 1.1801 0.1219
Met 38 1.1750 0.1195 Met 52 1.1817 0.1119
Glu 205 1.2337 0.1194 Glu 138 1.2070 0.1261
Gln 143 1.2007 0.1255 Gln 119 1.1653 0.1157
His 78 1.2164 0.1217 His 96 1.2017 0.1187
Lys 283 1.2060 0.1172 Lys 204 1.1791 0.1252
Val 141 1.1779 0.1178 Val 250 1.1731 0.1235
Ile 102 1.1831 0.1333 Ile 156 1.1790 0.1233
Phe 102 1.2075 0.1229 Phe 108 1.1757 0.1169
Tyr 118 1.1908 0.1144 Tyr 112 1.1663 0.1212
Trp 44 1.1436 0.1185 Trp 43 1.1565 0.1056
Thr 230 1.1760 0.1181 Thr 250 1.2025 0.1279
Gly 616 1.2084 0.1284 Gly 329 1.2028 0.1315
Ser 340 1.1912 0.1345 Ser 323 1.1895 0.1180
Asp 296 1.2115 0.1272 Asp 268 1.2171 0.1292
Asn 257 1.2111 0.1213 Asn 210 1.2200 0.1264
Pro 254 1.2141 0.1233 Pro 283 1.2071 0.1202
Arg 139 1.2042 0.1382 Arg 114 1.2096 0.1262

(B) Helical Conformations

AA # Mij oG AA # Mij (24
(1) Middle helix (N/N; = 11.0172) (2) N-Helix (N/N; = 11.9105)
Ala 175 1.2509 0.1165 Ala 128 1.1977 0.1311

Cys 20 1.2355 0.1185 Cys 19 1.1874 0.1022



CONFORMATIONAL PREFERENCE FUNCTIONS 265

Table II1 (Continued)

(B) Helical Conformations

AA # ij oy AA # Wij oy
(1) Middle helix (N/N; = 11.0172) (2) N-Helix (N/N; = 11.9105)
Leu 136 1.2768 0.1115 Leu 95 1.2243 0.1226
Met 37 1.2419 0.1074 Met 19 1.2189 0.0941
Glu 81 1.2662 0.1223 Glu 126 1.2225 0.1177
Gln 53 1.2466 0.1050 Gln 56 1.2504 0.1207
His 25 1.2632 0.1124 His 20 1.1985 0.1110
Lys 110 1.2600 0.1139 Lys 60 1.1773 0.1368
Val 86 1.2530 0.1240 Val 83 1.2230 0.1316
Ile 84 1.2739 0.1100 Ile 56 1.2262 0.1380
Phe 57 1.2877 0.1022 Phe 51 1.2253 0.1303
Tyr 39 1.2721 0.1109 Tyr 33 1.2094 0.1294
Trp 26 1.2492 0.1291 Trp 17 1.1947 0.1250
Thr 59 1.2780 0.1071 Thr 67 1.2278 0.1344
Gly 49 1.2845 0.1205 Gly 64 1.2280 0.1233
Ser 55 1.2916 0.1084 Ser 53 1.2496 0.1024
Asp 61 1.2839 0.1163 Asp 98 1.2164 0.1093
Asn 48 1.2956 0.1127 Asn 38 1.2600 0.1412
Pro 17 1.3035 0.1245 Pro 54 1.2406 0.1287
Arg 61 1.2852 0.1183 Arg 45 1.2256 0.1315
(3) Short helix (N/N; = 18.2196) (4) C-Helix (N/N; = 12.1779)

Ala 81 1.1957 0.1338 Ala 133 1.2093 0.1182
Cys 27 1.1715 0.1207 Cys 15 1.2260 0.1040
Leu 66 1.2139 0.1174 Leu 142 1.2358 0.1299
Met 8 1.2062 0.1047 Met 34 1.2535 0.1201
Glu 60 1.2215 0.1242 Glu 85 1.2521 0.1260
Gln 32 1.2375 0.1347 Gln 47 1.2770 0.1063
His 23 1.2052 0.1212 His 38 1.2621 0.1182
Lys 57 1.2404 0.1326 Lys 134 1.2428 0.1241
Val 46 1.2293 0.1161 Val 81 1.2133 0.1359
Ile 27 1.1948 0.1065 Ile 64 1.2345 0.1111
Phe 28 1.1807 0.1146 Phe 53 1.2574 0.1294
Tyr 28 1.2168 0.1179 Tyr 34 1.2182 0.1230
Trp 12 1.1925 0.0753 Trp 15 1.2487 0.1205
Thr 42 1.2536 0.1294 Thr 56 1.2389 0.1217
Gly 38 1.2713 0.1144 Gly 38 1.2697 0.1217
Ser 56 1.2175 0.0977 Ser 64 1.2602 0.1282
Asp 50 1.2368 0.1173 Asp 36 1.2547 0.1277
Asn 28 1.2504 0.1457 Asn 39 1.2726 0.1291
Pro 33 1.2561 0.1165 Pro 5 1.2000 0.0557
Arg 30 1.1903 0.0984 Arg 45 1.2567 0.1266

® The average u; and sample standard deviation «; of sequence environments X (see Methods) are given together with the total
number of environments N;; in the protein data set for amino acid type i in the secondary conformation j. For each conformation j the
fraction of that conformation in the protein data set is given as the inverse value N/N;.

preference on hydrophobic environment and of - erences have stronger dependence on buried surface
sheet preference on buried surface environment is environment than a-helix preferences (Table IV)
such that about 50% of amino acids have positive and because of that might be more useful in pre-
correlation with higher environment X, but that de- dicting helical structures when buried sequence en-

pendence is often not significant. Middle helix pref- vironment is used to improve a prediction.
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Figure 2. Flowchart of method employed by PREF. The
DSSP is Kabsch-Sander’s program.? All other programs
(also in squares) are written by us in the FORTRAN lan-
guage. The training procedure starts with the choice of
the data base of crystallographically solved protein struc-
tures (x-ray structures) and an appropriate branch of the
program flow. The middle-helix preferences are used only
in the right branch (SS7, FREQ, GAUS and SEDP pro-
grams). A large number of hydrophobicity scales, physical
property scales, and statistical scales are given in the pro-
grams and one of them must be also chosen at the start
of each training or testing procedure. Class limits for en-
vironments (8 numbers) are needed only for the training
procedure. The essential program for users who want to
avoid the training procedure is SEDP (or SP) with cor-
responding data file GAUS.DAT (or NORM.DAT). The
primary structure input for SP (or SEDP) contains the
secondary structure, too, in the form of all U residues (U
stands for undefined conformation) when secondary
structure is not known, or in the form of H (for an a-
helix), B (for an 8-sheet), T (for turn), and U residues
when secondary structure is known.

The Secondary Structure Prediction

To make optimal use of preference functions, one
would have to find optimal environmental variable
X for each structural type and to combine the pre-
diction results in a novel secondary structure pre-
diction algorithm. We shall explore in this section
only the utility of using preference functions based
on Rose’s hydrophobicity scale!® for average buried
surface areas. Preliminary tests with membrane

Table IV Linear Regression Analysis® of Data
Points for the Dependence of Preferences

on Buried Surface Environment Calculated
from the Rose’s Hydrophobicity Scale'®

AA a b Sa S F
(A) a-Helix

Ala -0.322 1.349 0.372 0.299 20.30
Cys 0.244 0.475 0.692 0.558 0.72
Leu —1.696 2.457 0.358 0.288 72.81
Met —2.314 2.925 0.904 0.728 16.14
Glu 0.704 0.664 0.340 0.274 5.89
Gln -0.994 1.726 0.998 0.804 4.61
His —0.359 1.138 0.805 0.649 3.08
Lys —0.397 1.370 0.323 0.260 27.67
Val —-1.312 1.877 0.319 0.257 53.22
Ile -1.648 2.212 0.308 0.248 79.41
Phe ~1.895 2.543 0.580 0.467 29.62
Tyr —-0.915 1.468 0.715 0.576 6.49
Trp —2.718 3.214 0.930 0.749 18.40
Thr —1.086 1.571 0.461 0.372 17.85
Gly —0.941 1.178 0.169 0.137 74.43
Ser -1.667 1.931 0.387 0.312 38.39
Asp —0.071 0.805 0.440 0.354 5.17
Asn -1.317 1.706 0.621 0.501 11.60
Pro —-1.270 1.506 0.520 0.419 12.93
Arg —-0.707 1.464 0.533 0.430 11.61

(B) Middle helix

Ala —-3.018 3.847 1.103 0.889 18.74
Cys —3.062 3.231 1.123 0.905 12.75
Leu —5.041 5.325 0.617 0.497 114.70
Met —3.485 4174  1.351 1.089 14.70
Glu —2.819 3.296 0.839 0.676 23.74
Gln —1.266 1.888 0.975 0.785 5.78
His —1.452 1.821 0.862 0.695 6.88
Lys —2.088 2.754 0.588 0.474 33.77
Val —2.474 2.813 1.041 0.839 11.24
Ile —5.020 5.245 0.712 0.574 83.54
Phe —4.282 4.499 1.356 1.002 16.97
Tyr —1.978 2.302 1.325 1.068 4.65
Trp —7.313 7.496 4.242 3.418 4.81
Thr —2.324 2.506 0.907 0.731 11.75
Gly —-2.057 2.078 0.599 0.483 18.55
Ser —3.002 2.981 0.380 0.306 94.93
Asp —2.572 2.791 0.722 0.582 22.97
Asn —3.038 3.127 0.819 0.660 2244
Pro —1.522 1.515 0.472 0.380 15.90
Arg —2.948 3.434 1.723 1.389 6.12

® Our FORTRAN program was used to find the intercept (a),
slope (b), standard error of intercept (s,), standard error of slope
(ss), and F value—F = (b/s;)* = t*—for the linear regression line
drawn through preference points in each case. The ¢ test serves
to discover whether or not an observed correlation coefficient r
is significantly greater than zero. For N = 9 and F = (N — 2)/
(—1 + 1/r?% > 12.24 (Appendix F in Ref. 68) the probability p to
have such a correlation coefficient in a sample drawn from pop-
ulation with zero correlation is less than 0.01.
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Figure 3. Leucine preferences for a-helix structure (A
and B) and for -sheet structure (C and D). Rose’s scale®
is used to calculate environment X of buried solvent ac-
cessible surfaces on the x axis and preference functions
(see Methods) in (A) and (C). The Fauchére-Pliska hy-
drophobicity scale? is used to calculate environment X
and preference functions in (B) and (D). The same no-
tation is used as in Figure 1B.

proteins of known structure indicated that intro-
duction of middle helical conformation increases the
accuracy of a prediction.’” Therefore, for all reported
predictions, preference functions for seven different
secondary structure conformations were used in-
cluding four helical conformations: middle helix, N-
terminal helix, C-terminal helix, and short helix
(right branch of programs flow in the Figure 2).
With this procedure, adopted middle helical pref-
erences in some membrane proteins are very high
(Figure 4). »

For the training set of 90 different water-soluble
proteins the overall percentage of correctly predicted
residues (the success rate, or §3 index multiplied by
100) is 53% for the three-state model and 42% for
the four-state model. The three-state prediction for
helical residues is slightly better @, = 62% of helical
residues. The corresponding results for 3-sheet and
coil (turn and undefined residues) are §; = 25% and
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Q. = 57%, respectively. The correlation coefficients
of Matthews? for helix, sheet, and coil residues are
C, = 0.22, Cs = 0.19, and C, = 0.31, respectively.
Better overall results than that obtained from Chou-
Fasman’s predictive schemes®?” were not expected
since decision constants and Chou-Fasman rules
such as helix propagation rules and helix stop signals
were not incorporated in the algorithm. With an
optimal choice of decision constants,?’” the GOR
program (algorithm from 1978*) results in 55%,
0.22, 0.23, 0.28 for @4, C,, Cg, and C., respectively,
for the same set of 90 soluble proteins.

For the first testing set of proteins, a subset of
11 «-class proteins was chosen from the 90-protein
list (Table V). Each of 11 proteins was first excluded
from the training set of proteins when preference
functions were extracted from the training set. We
have reported the y and z values (see Methods) for
a-helices to show that Q, = 74% (in average) for
that group of proteins is not due to excessive over-
estimation of helical conformation. Overall success
rate in the three-state model ; = 66%, and corre-
lation coeflicient for helical residues C, = 0.38 are
considerably better performance parameters than
for the whole protein data set. Corresponding per-
formance parameters for the case when «-helix con-
formation is not divided into middle helix, N-ter-
minal helix, and C-terminal helix (left branch of
program flow in Figure 2) are @; = 59% and C,
= 0.35. Two parameters in Table V—h and hp—
report the percentage of residues among residues
with local environment higher than 1.37 nm? (h)
that are not in middle-helical conformation and
percentage of residues among residues having mid-
dle-helix preference higher than 1.4 (hp) that are
not in middle-helical conformation.

For the second testing set of 5 membrane proteins
the overall accuracy is also 66% (Table VI). None
of these proteins were included in the training set
of 90 soluble proteins. Overall helix prediction ac-
curacy and correlation coefficient are 79% and 0.34,
respectively for this set of proteins. Due to incom-
pletely known structure of three proteins from that
list, we have assigned all extramembrane residues
in “known’ structures of rhodopsin, bacteriorho-
dopsin, and lactose permease to the undefined con-
formation. This will tend to decrease the apparent
accuracy. For instance, if lactose permease, whose
structure is known in less details than for other 4
proteins,?® is omitted from the membrane protein
list, overall prediction accuracy @3, helix prediction
accuracy €,, and helix correlation coefficient C, in-
crease to 67%, 79%, and 0.40, respectively. When
rhodopsin® is also omitted, and only 3 proteins with
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Figure4. A middle helix preference profile for (A) bac-
teriorhodopsin,? (B) photosynthetic reaction center L
subunit,® and (C) photosynthetic reaction center M sub-
unit.”’ Experimental data for the a-helical segments®®®
are shown on the x axis in the form of empty boxes for
segments found outside membrane or shaded boxes for
the transmembrane segments. The preferences are
smoothed by computer (see text) and resulting points are
connected by hand.

best known structure are left in the list, ie.,
bacteriorhodopsin® and two subunits of photosyn-
thetic reaction center,®*? then h and hp parameters
from Table VI decrease to 16 and 13 respectively
(on average). It is also worth noticing that residues
with buried surface environment higher than 1.37
nm? and with middle helix preference higher than
1.4 are no longer just 10% of the total number of
residues, but form 37% and 43% residues, respec-
tively, of all residues in these 5 membrane proteins.
Although sheet conformation of residues was also
predicted by our program, quality indexes for pre-
dicting B-residues were not included in Table VI,
since from all 5 proteins only several residues from
the amino termini of the photosynthetic reaction
center L and M subunits are known to be in the 8-
sheet conformation.?3> The success rate and cor-
relation coeflicient for predicting turn (or unde-
fined ) residues in 5 membrane proteins are 48% and

0.42, respectively. The reason for low turn prediction
accuracy in the testing list of membrane proteins is
quite clear. The assignment of undefined confor-
mation to all extramembrane segments of rhodopsin,
bacteriorhodopsin, and lactose permease increases
the number of N, residues and decreases Q. index
that contains N, in the denominator.

The GOR program,* with a choice of decision
constants (DC) DChehx = —100, DCmm = DCcoﬂ = O,
DCyeia = 50, appropriate for proteins having more
than 50% of helical residues, results in considerably
lower values of 60% and 0.27 for @3 and C,,, respec-
tively, for the same set of 5 membrane proteins. For
photosynthetic reaction center M and L subunits
only, the corresponding (averaged) values are Qs
= 60% and C, = 0.38 with the same choice of deci-
sion constants. For the testing set of 11 a-class pro-
teins, the corresponding (averaged) values are Q,
= 66% and C, = 0.37, which is comparable but not
better than results presented in Table V.

Strength and Limitations of This
Prediction Method

Limitations of our method are best seen by predict-
ing the secondary structure of specific proteins. With
the choice of Rose buried surface area scale!® pre-
dictions of 3-class proteins, either soluble or mem-
brane bound, are poor. For instance, if the proposed
(-barrel structure for Omp A outer membrane pro-
tein of Escherichia coli®® is assumed correct, then
our program results are 44%, 17%, and 0.13, for the
three-state prediction accuracy, 3-sheet prediction
accuracy, and sheet correlation coefficient, respec-
tively. Only one of assumed 8 3-strands are predicted
(the C-terminal one), while other 7 strands are
mostly predicted as the a-helices. With outer mem-
brane porin of E. coli, * performance parameters are
similar: 38% for the three-state prediction accuracy,
18% for the (3-sheet prediction accuracy, and 0.14
for the 3-sheet correlation coefficient.

For the class of all-a proteins, that basically have
only 2 conformational states—helix and coil—pre-
dictions are generally of good accuracy. One example
is hemerythrin (1hmz) predicted with an overall ac-
curacy of 80%, a-helix accuracy of 91%, and cor-
relation coeflicients for helix and coil of 0.49 and
0.58 respectively (Table V). From the plot of middle
helix preferences along the sequence (not shown),
one can see that all helices in this protein are clearly
separated and identified.

The «-helix preference profiles for two membrane
proteins—bacteriorhodopsin®® and photosynthetic
reaction center®* —are shown in Figure 4. Only
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Table V Prediction Results® on Testing a Set of a-Class Soluble Proteins
Protein (PDB Code) C. Qs Q. Wy X, Yo Z4 h hp
1. Cytochrome ¢550 [155¢] 0.33 59 77 27 51 8 35 50 0
2. Cytochrome b562 [156b] 0.35 70 73 51 21 19 12 0 0
3. Cytochrome c [1ccr] 0.48 69 64 30 53 17 11 44 40
4. Hemoglobin [1eco] 0.27 63 63 64 23 38 11 9 11
5. Cytochome p450 [2cpp] 0.36 60 82 172 103 38 92 38 12
6. Leghemoglobin [21h7] 0.40 69 73 87 25 32 9 7 0
7. Hemoglobin V [2lhb] 0.41 69 69 77 29 35 8 18 0
8. Calcium-binding parvalbumin
b [3cpv] 0.28 58 69 36 33 16 23 56 50
9. Calcium-binding protein
[3icb] 0.62 80 88 38 23 5 9 0 0
10. Cytochrome ¢551 [451c¢] 0.37 63 49 20 35 21 6 0 0
11. Hemerythrin {1hmz] 0.49 80 91 72 18 7 16 32 24
Weighted average 0.38 66 74 26 12

® The performance parameters for predicting helix conformation («) are given as the correlation coefficient C,?® the prediction
accuracy @, number of residues associated with positive correct prediction w, negative correct prediction x, underpredictions y, and
overprediction z. Overall prediction accuracy €3 in the three state model is also given. Two additional parameters, h and hp, report the
percentage of residues, which are not in middle helical conformation, among residues with local environment higher than 1.37 nm? (k)
and percentage of residues, which are not in middle helical conformation, among residues having middle helix preference higher than
1.4 (hp). Class limits used were 1.050, 1.112, 1.152, 1.190, 1.226, 1.262, 1.303, 1.366 (in nm?). The average is determined by weighting
each protein’s statistical parameter with the number of residues in the protein.

smoothed middle helix preferences are shown. In
almost all cases the peaks with high middle helix
preference correspond to the sequence segments that
are helical and have environment X higher than av-
erage for the protein data base. The valleys in the
middle helix preference profile are generally the
segments with high turn preference (not shown).
Six out of seven helices in bacteriorhodopsin are
recognized (Figure 4A). One missed helix in bac-
teriorhodopsin is helix D. There are both
experimental® and theoretical®® indications that
only helix D is able to unfold and become partially
disordered and susceptible to proteases. This may

happen because helix D is glycine-rich helix. Glycine
presence can lead to helix underprediction by our
method. Glycine has the smallest value for its av-
erage buried area (Methods ). During the application
of the PREF suite of programs, it decreases helical
preference of all nearby amino acids in two stages.
First, helical preferences for all other nearby amino
acids are decreased, because glycine decreases the
buried surface area environment of these amino ac-
ids, and because, as mentioned earlier, a positive
correlation exists for all 20 natural amino acids
found in proteins between environment value and
helical or middle helical propensity. Second, in the

Table VI Prediction Results® on Testing Set of Membrane Proteins

Protein [Reference] C. Qs Q. w, Xo Ve 2, h hp
1. Rhodopsin (human) [29] 0.44 67 85 161 90 29 68 21 16
2. Bacteriorhodopsin [30] 0.36 69 79 130 47 34 37 15 9
3. Lactose permease (E. coli) [28] 0.17 60 77 199 61 58 98 23 28
4. Photosynthetic reaction center
L subunit [31, 32] 0.33 67 75 132 56 44 41 20 18
5. Photosynthetic reaction center
M subunit [31, 32] 0.45 67 76 148 89 48 38 14 11
Weighted average 0.34 66 79 19 18

® The performance parameters are defined in the footnote of the Table V.



270 JURETIC ET AL.

smoothing process, residue helical preference can
be further reduced by including a low value caused
by glycine in the average of preferences.

For the photosynthetic reaction center, subunits
L and M, all helices, both in and out of the mem-
brane, are clearly recognized by our program (Figure
4B, C). However, some transmembrane helices have
wrongly predicted start or end, and some segments
are overpredicted as helical segments. Several -
sheet residues and 2 antiparallel 8-sheets found at
the amino terminal of L. and M respectively are not
predicted.

DISCUSSION

The basic result of this paper is that the introduction
of relatively simple preference functions alone is
enough to predict helices in membrane proteins.
Importantly, preference functions are constructed
using the data base of soluble protein structures and
a hydrophobicity scale also derived from the analysis
of such structures.'® The location of helices can be
predicted by other secondary structure prediction
procedures, such as the GOR information theory
procedure *® or neural network procedures.®2373 Al
seven transmembrane helices in bacteriorhodopsin
have been predicted by neural network procedure, *’
but their location in the sequence is considerably
different from the location expected on the basis of
experimental®® and theoretical *® investigations. We
have also used an improved version of neural net-
work program,® trained on the class of all-« proteins,
to predict the a-helix conformation in membrane
proteins. The performance parameters are in several
cases better than those listed in Table V1. For other
secondary structure prediction procedures, “trained”
on water-soluble proteins, correlation between pre-
dicted structure of membrane proteins and structure
measured in experiments is so low that such pro-
cedures are considered inappropriate for membrane
proteins.'® The most important deficiency of such
methods is that they do not identify what physical
properties of the polypeptide segments are important
for helix formation.

Because of its simplicity, the Chou-Fasman pre-
diction scheme? is still widely used. The success of
Chou-Fasman’s prediction scheme may be in part
due to the fact that steric effects are predominant
in their conformational parameters for «-helix.?®
Conformational preference functions, introduced in
this work, can take such effects explicitly into ac-
count through the combination of statistics and
physical-chemical considerations. The protein-

folding process reduces the accessible surface area
by a factor of about 3-4 depending on protein mo-
lecular weight.*® During the initial stages of folding,
the formation of autonomous folding units (a-hel-
ices) is probably the most efficient mechanism for
water exclusion from polypeptide surface. It is clear
that high environment (Rose’s scale'®) can be con-
sidered as a high potential for the exclusion of side-
chain surfaces from the contact with water and for
a-helix formation. The data presented indicate that
a-helix formation may require steric protection of-
fered by primary structure neighbors of residues with
helix propensity. Our results add to the recently re-
ported procedures for identifying potential folding
initiation sites*"*® since they suggest that an a-helix
can nucleate more easily in a local primary structure
environment of higher initial solvent-accessible
surface area that can become buried in protein in-
terior.

That the a-helix preference of a given amino acid
can have a very different value depending on its se-
quence neighbors has some implications on the sec-
ondary structure prediction algorithms. A given
amino acid can influence helix-forming potential ei-
ther because of its inherent preference for a helix
or because it influences its neighbors. For example,
Figure 3A illustrates that higher environment
(Rose’s scale'®) of leucine neighbors fosters a-helix
conformation of that amino acid. The sequence
neighbors of leucine are then more bulky with higher
propensity to become buried during folding process.
Such correlation between environment of buried
areas and «-helix conformation is observed for all
amino acid types (Table IV). An bulky amino acid,
such as arginine, tends to help helix formation of
its sequence neighbors because of its large size.
However, its own preference for helix is either better
or poorer than that of other amino acids depending
on its environment. A secondary structure prediction
algorithm that does not recognize this dual role of
an amino acid is likely to perform less successfully
than those that do.

To calculate preference functions and to use them
in predicting profiles of secondary structure pref-
erences, a suite of FORTRAN programs, PREF, has
been created (Figure 2). Preference functions based
on Gaussian curves for a frequency distribution of
an amino acid over environments are not only a close
fit for preference points (Figure 1 and 3), but can
be easily incorporated into any secondary structure
prediction scheme that uses conformational pref-
erences. Figure 4 illustrates that most segments of
transmembrane proteins, predicted by us to be in
the middle helix conformation, are indeed in the «-



helix conformation. Same segments have higher
than average environment of buried areas.

Sequence-dependent preferences are better pre-
dictors of helices in the class of all-« proteins than
the environmental property used to derive these
preferences (compare parameters b and hp in the
Table V). The same conclusion cannot be derived
for membrane proteins until a larger number of such
proteins of known structure can be analyzed. How-
ever, plots of middle helix preferences along the se-
quence of integral membrane proteins (Figure 4)
give a clearer picture of where helices are located
than hydrophobicity plots that can be found in the
literature !* for such proteins. Of course, hydropho-
bicity plots are just that—i.e., such plots can be used
to locate highly hydrophobic sequence segments
rather than segments that have high probability to
fold into particular secondary conformation.

Before using preference functions, a particular
scale of physical, chemical, or statistical parameters
for 20 natural amino acids must be chosen from
many proposed in the literature.***¢ The PREF pre-
diction depends on the choice of that scale, so that
computer experiments with PREF can be used to
select the hydrophobicity scale that gives the best
secondary structure prediction. Identification of an
optimal scale of physical parameters for each sec-
ondary structure conformation can suggest what
features of amino acids are important during for-
mation of that conformation.

It is indeed unlikely that one scale will be best
for all protein classes, for all conformations, and for
all applications.*’ In our preliminary investigations'’
we have found that Rose’s scale!® is the best pre-
dictor for localizing helices in the photosynthetic
reaction center M subunit.*®* Since Rose’s scale is
among the best conserved scales for all examined a-
class protein families, % it is not surprising that it
is also a good predictor of protein-folding pattern
in such proteins (Table V). That the same scale
works well for globular membrane proteins with
transmembrane helices (Ref. 17 and Table VI) in-
dicates that similar principles operate during folding
of such proteins and of hydrophobic cores of a-class
soluble proteins.

For the data base of soluble globular proteins
containing roughly equal amounts of «-helix, (-
sheet, and coil residues, PREF results with Rose’s
scale® are similar to that obtained with older version
of the GOR algorithm.*?" In the case of a-class pro-
teins (Table V) and for globular membrane proteins
with transmembrane helices ( Table VI), secondary
structure predictions using PREF are comparable
or better than that obtained with GOR algorithm.
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Although the GOR algorithm takes implicitly into
account all physical properties of neighboring amino
acids in the sequence (in the information about
amino acid type), it is conceivable that for specific
protein classes the prediction accuracy may depend,
in addition, on the explicit choice of an input coding
scheme based on the physical properties of amino
acids that are crucial for the folding process into
dominant secondary conformation. Gibrat et al. have
recently estimated® that 10% of the residues in the
data base of soluble globular proteins of known
structure have their conformation almost exclusively
determined by the local sequence. These residues
are speculated to act as seeds for the nucleation sites
during the folding. The fourfold increase in the per-
centage of residues (from 10 to 40%) having high
local buried surface environment and high middle
helix preference as well in the data base of integral
membrane proteins is consistent with the hypothesis
that in such proteins considerably more than 10%
of the residue conformations is determined by the
local sequence. If true, this hypothesis would help
explain accurate prediction of membrane protein
structures with PREF algorithms that take into ac-
count only local sequence information. However,
what seems to be the case for the data set of integral
membrane proteins, as those used in this study, must
be tested for other membrane protein classes.

A set of PREF algorithms leaves many possibil-
ities to gain additional insight into protein-folding
problems when using these algorithms. We did only
preliminary work in exploring some of these possi-
bilities such as taking less or more than 8 nearest
neighbors in the definition of sequence environment
(8 or more neighbors must be averaged for optimal
results) or in using a different scale of physical-
chemical properties in that definition. The scales
considered very similar, such as Chothia’s scale’ of
solvent-accessible surfaces,® Rose’s scale'® of buried
surface areas, and Fauchére-Pliska’s scale?® of so-
lution hydrophobicities, can produce completely dif-
ferent dependencies of preference functions on se-
quence hydrophobic environment ( Figure 3 and un-
published results). Statistical scales of Chothia and
Rose are well correlated (the correlation coefficient:
0.84), so that it is not surprising that either higher
initial solvent-accessible surface area of neighboring
residues, or their higher potential to bury such area,
increase the preference of the central residue (ir-
respective of its type) for the a-helical conformation
(Ref. 44 and Table IV of this work). However, in
soluble proteins, more hydrophobic sequence neigh-
bors do not increase the preference of the central
residue for the a-helical conformation (Figure 3B
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and similar results for other amino acids that are
not shown). The difference observed in the behavior
of the preference function as a function of accessible
surface area vs hydrophobicity is consistent with an
earlier observation® that the local clustering pattern
of accessible surface area is different from that of
the hydrophobicity.

A scale different from Rose’s'® may be better in
predicting sheet conformation, for which formation
intermolecular forces are predominant over steric
effects.’® As a rough guide of how useful some amino
acid scale will be in predicting secondary structure,
one can examine how strongly preference function
for that conformation depends on the sequence en-
vironment associated with that scale. For instance,
the results presented in Figure 3 for leucine, when
repeated for all other amino acid types, would in-
dicate that the Fauchére-Pliska scale?® is a good
predictor of B-sheet conformation, while Rose’s
scale is a good predictor of a-helix conformation.
Indeed, the test with the Fauchére-Pliska scale2®
showed that 3-sheet conformation of 3-class proteins
is much better predicted with this hydrophobicity
scale than with Rose’s scale'® of buried surfaces (not
shown ). Systematic evaluation of some 55 different
sets of scales of conformational parameters with a
set of PREF algorithms, trained on soluble and
tested on membrane proteins, gave advantage to
those parameters that are specific to protein mole-
cules (to be published). In particular, interresidue
contact energies derived by Miyazawa and
Jernigan® (from crystal structures of globular sol-
uble proteins), helix propagation parameters,® and
a combination of Chou-Fasman’s conformational
parameters for a-helix and $-sheet® are also good
predictors of membrane proteins folding motifs (not
shown). When predicting membrane protein sec-
ondary structure, an improvement in performance
parameter C, can be achieved for some scales when
middle helix conformation is defined. The example
is Rose’s scale of buried surfaces'® that we used in
this paper. Nevertheless, that is not a general rule.

Helix prediction can be obviously improved by
introducing in the algorithm the cooperativity rules,
designed to eliminate lone helical residues, and he-
lical end rules designed to locate segments where
helical growth should stop.*®*” Qverall prediction in
the three-state model should increase in accuracy
when protein class prediction from sequence
information® % js performed first and decision con-
stants introduced in the algorithm. Also, the infor-
mation from the arrangement of hydrophobic resi-
dues, and of supersecondary structures, can be as-

sessed following the work of Lim, ®! Eisenberg,* and
others.%?%® As is the case with other statistical
methods, the choice of protein data base for the
training procedure is the most important initial step.
The statistics is better for larger number of proteins
in the training data set of proteins, but structures
not known at high enough resolution must be
avoided.®” Accordingly, better results are expected
when a larger data base of high-resolution structures
is used or when preference functions are trained on
a specific class of proteins (unpublished results).
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